Java Message Service API
—— —
CSE 487/587
Feb 17, 2005

References:
http://java.sun.com/products/jsp/
JRun Programmer’s Guide

Additional Notes

o Project 1 deadline extended to March 6
o Will cover JMS concepts today

o Practical example to be covered in the
recitations next week

o Today'’s lecture should let you finalize your
project design

Introduction

o The Java Message Service API allows
applications to create, send, receive and
read messages using reliable,

asynchronous, loosely coupled
communication

o It is part of the J2EE specification since
J2EE ver 1.3. Hence, every implementation
of J2EE (JRun, WebSphere) must support
JMS.

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

Introduction (contd.)

o0 Loosely-coupled: Sender and receiver
need not be available at the same time. In
fact they can be oblivious of each other.
They only need to know the “destination”
and the format of the message

o Different from RPC (tightly-coupled) and
e-mail (humans)

JMS API Architecture

o JMS Provider is a messaging system that
implements the JMS interfaces and
provides admin and control features.

JRun has its own built-in JMS Provider. It
can also support external providers.

o JMS Clients are the programs or
components written in Java that produce
and consume messages. Any J2EE
component can act as a JMS Client.

JMS API Architecture (contd.)

o0 Messages are the objects that
communicate information between JMS

Clients

o Administered Objects are preconfigured
JMS objects created by an administrator
for the use of clients.

= Destinations
= Connection Factories

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

Messaging Domains

o Point-to-Point Messaging (PTP)

= Each message is addressed to a = A sender and a receiver of a
specific queue, and receiving clients message have no timing
gﬁggég messages from these dependencies. The receiver can
. . fetch the message whether or not
= Queues retain all messages sent to it was running when the client sent
them until the messages are the message
consumed or until the messages .
expire. = The receiver acknowledges the
= Each message has only one successful processing of a
consumer.

message.

Msgl @
m — \ gueue “e
Sends e

Acknowledges

Messaging Domains (contd.)
C (@

o Publish-Subscribe (Pub-Sub)
= Clients address messages to a Topics retain messages only as
topic, which functions somewhat long as it takes to distribute them
like a bulletin board. to current subscribers.

The system takes care of Each message can have zero or
distributing the messages from multiple consumers.
publishers to subscribers.

Publishers and subscribers have
a timing dependency. A client
that subscribes to a topic can
consume only messages

published after the client has an 55
active subscription to the topic.
Subserbes
= Exception: Durable
Dalivers

Subscriptions
e

Message Consumption

o Receivers can consume messages in the following two ways
(IMS is inherently asynchronous. Here, we use the following
terms in a slightly different sense.):

= Synchronous: A subscriber or a receiver explicitly fetches the
message from the destination by calling the receive method.
The receive method can block until a message arrives or can

time out if a message does not arrive within a specified time
limit.

Asynchronous: A client can register a message listener with
a consumer. A message listener is similar to an event listener.
Whenever a message arrives at the destination, the IMS
provider delivers the message by calling the listener's
onMessage method, which acts on the contents of the
message.

Message-driven beans use Asynchronous Message
Consumption

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

JMS API Programming Model

Objects involved in JMS Programming

JMS API Programming Model

o Administered Objects: These objects may be
implemented differently in every JMS
implementation. Hence, they are set up
administratively rather than through code, using
admin tools provided by the JMS implementation.

o Of course, these objects implement interfaces
that are specified by the JMS (J2EE) specification.

o Two objects: ConnectionFactory & Destination

JMS API Programming Model

Administered Objects (contd.)

= Connection Factory

A connection factory is the object a client uses to create a
connection to a provider.

Each connection factory is an instance of the
ConnectionFactory, QueueConnectionFactory, Or
TopicConnectionFactory interface.

At the beginning of a JMS client program, you usually
perform a JNDI lookup of a connection factory, then cast and
assign it to a ConnectionFactory object.

For example,

Context ctx = new InitialContext();
ConnectionFactory cFactory = (ConnectionFactory)
ctx.lookup ("jms/ConnectionFactory");

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

JMS API Programming Model

Administered Objects (contd.)

= Destinations

A destination is the object a client uses to specify the
target of messages it produces and the source of messages
it consumes

Queues in PTP and Topics in Pub/Sub. A JMS application
can use multiple queues or topics (or both).

A destination must be looked up using the context and
then casted to the pestination, Queue Or Topic.

For example,
Destination MyDest = (Destination)
ctx.lookup (" jms/MyTopic") ;
Queue myQueue = (Queue) ctx.lookup ("jms/MyQueue");

JMS API Programming Model (contd.)

o Connections

= A connection encapsulates a virtual connection with a JMS
provider

You use a connection to create one or more sessions. When
you have a connectionFactory Object, you can use it to create
a Connection:

Connection conn = cFactory.createConnection();

Before an application completes, you must close any
connections that you have created. Failure to close a
connection can cause resources not to be released by the JMS
provider. Closing a connection also closes its sessions and
their message producers and message consumers

conn.close();

Before your application can consume messatt;es, you must call
the connection’s start method. If you want to stop message
delivery temporarily, you call the stop method

JMS API Programming Model (contd.)

o Sessions

= A session is a single-threaded context for producing and
consuming messages. You use sessions to create message
producers, message consumers, and messages

A session provides a transactional context with which to group
a set of sends and receives into an atomic unit of work

After you create a connection object, you use it to create a
Session:

Session session = conn.createSession(false,
Session.AUTO_ACKNOWLEDGE) ;

= The first argument means that the session is not transacted;
the second means that the session automatically
acknowledges messages when they have been received
successfully.

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

JMS API Programming Model (contd.)

o Message Producers

= A message producer is an object that is created by a Session
and used for sending messages to a Destination

You use a session to Create a MessageProducer for a
Destination!

MessageProducer producer
MessageProducer producer

session.createProducer (myQueue) ;
session.createProducer (myTopic) ;

After you have created a message producer, you can use it to
send messages by using the send method:

producer.send (message) ;

= You must first create the messages

JMS API Programming Model (contd.)

o Message Consumers

= A message consumer is an object that is created by a session
and used for receiving messages sent to a destination

A message consumer allows a JMS client to register interest in
a destination with a JMS provider

The IJMS provider manages the delivery of messages from a
destination to the registered consumers of the destination

For example, you use a session to create a MessageConsumer
for either a queue or a topic:

session.createConsumer (myQueue) ;
session.createConsumer (myTopic) ;

MessageConsumer consumer
MessageConsumer consumer

JMS API Programming Model

Message Consumers (contd.)

= After you have created a message consumer, it becomes
active, and you can use it to receive messages

You can use the close method for a MessageConsumer to make
the message consumer inactive

Message delivery does not begin until you start the connection
you created by calling its start method

You use the receive method to consume a message
synchronously

conn.start ();

Message m = consumer.receive();

conn.start () ;

Message m = consumer.receive(1000); // time out after a sec

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

JMS API Programming Model (contd.)

o Message Listeners
(Asyncronous Message Consumption)

A message listener is an object that acts as an asynchronous
event handler for messages

This object implements the MessageListener interface, which
contains one method, onMessage

In the onMessage method, you define the actions to be taken
when a message arrives

The onMessage method takes one argument of type Message,
which your implementation of the method can cast to any of
the other message types

You register the message listener with a specific
MessageConsumer by USing the setMessageListener method

JMS API Programming Model

Message Listeners (contd.)

For example,

Listener myListener = new Listener();
consumer.setMessageListener (myListener) ;

After you register the message listener, you call the start
method on the connection to begin message delivery

The onMessage method is called by the JMS Provider when a
message is delivered

Your onMessage method should handle all exceptions. It must
not throw checked exceptions

At any time, only one of the session's message listeners is
running

JMS API Programming Model (contd.)

o Message Selectors

If your messaging application needs to filter the messages it
receives, you can use a JMS API message selector, which
allows a message consumer to specify the messages it is
interested in

Message selectors assign the work of filtering messages to the
JMS provider rather than to the application

A message selector is a string that contains an expression

The createconsumer method allows you to specify a message
selector as an argument when you create a message consumer

The message consumer then receives only messages whose
headers and properties match the selector. A message selector
cannot select messages on the basis of the content of the
message body.

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

JMS API Programming Model (contd.)

o Messages

= The ultimate purpose of a JMS application is to produce and to
consume messages that can then be used by other software
applications

= JMS messages have a basic format that is simple but highly
flexible

= A JMS message has three parts: a header, properties, and a
body

JMS API Programming Model

Messages (contd.)

= Message Headers

A JMS message header Header Field SetBy
contains a number of inati R
predefined fields that JMSDestination |send or publish method

contain values that both

) ! JMSDeliveryMode send Or publish method
clients and providers use

to identify and to route JMSExpiration send or publish method
messages

JMSPriority send Or publish method
Each header field has

associated setter and JMSMessageID send Or publish method

getter methods

JMSTimestamp send Or publish method
Some header fields are JMSCorrelationID Client
intended to be set by a

client, bL_Jt many are set JMSReplyTo Client
automatically by the send

or the publish method, JMSType Client

which overrides any

client-set values. JMSRedelivered JMS provider

JMS API Programming Model

Messages (contd.)

= Message Properties

You can create and set properties for messages if you need
values in addition to those provided by the header fields. You can
use properties to provide compatibility with other messaging
systems, or you can use them to create message selectors

The JMS API provides some predefined property names that a
provider can support. The use either of these predefined
properties or of user-defined properties is optional

= Message Bodies

The JMS API defines five message body formats, also called
message types

The JMS API provides methods for creating messages of each
type and for filling in their contents.

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

JMS API Programming Model

Messages (contd.)

For example,

TextMessage message = session.createTextMessage () ;
message.setText (msg_text) ; // msg_text is a String
producer.send (message) ;

At the consuming end, a message arrives as a generic Message
object and must be cast to the appropriate message type:

Message m = consumer.receive();
if (m instanceof TextMessage) {
Text! =) m;
System.out.println("Reading message: " +
message.getText ()) ;

} else {
// Handle error

}

JMS API Programming Model

Messages (contd.)

Message Type Body Contains

A java.lang.String object (for example, the contents of an Extensible

TextMessage Markup Language file).

A set of name-value pairs, with names as String objects and values as
MapMessage primitive types in the Java programming language. The entries can be

accessed sequentially by enumerator or randomly by name. The order of
the entries is undefined.

A stream of uninterpreted bytes. This message type is for literally encoding a body

BytesMessage i
o 9¢ |10 match an existing message format.

Streanttessage | Siream of primitive values in the Java programming language, filed and read
sequentially.

ObjectMessage |A Serializable object

Nothing. Composed of header fields and properties only. This message type is

M
©8S39€ | seful when a message body is not required.

ftp://ftp.oreilly.com/pub/conference/java2
001/Hunter_et_al_jaxp.pdf

